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Abstract Hamiltonian encoding (HE) methods have been used to understand mech-
anism in computational studies of laser controlled quantum systems. This work studies
the principles for extending such methods to extract control mechanisms from labora-
tory data. In an experimental setting, observables replace the utilization of wavefunc-
tions in computational HE. With laboratory data, HE gives rise to a set of quadratic
equations for the interfering transition amplitudes, and the solution to the equations
reveals the mechanistic pathways. The extraction of the mechanism from the system
of quadratic equations raises questions of uniqueness and solvability, even in the ideal
case without noise. Symmetries are shown to exist in the quadratic system of equa-
tions, which is generally overdetermined. Therefore, the mechanism is likely to be
unique up to these symmetries. Numerical simulations demonstrate the concepts on
simple model systems.

Keywords Schrödinger equation · quantum control · control mechanism ·
Hamiltonian Encoding · quantum theory

1 Introduction

The control of quantum mechanical systems is a growing area of research, which is
being explored for fundamental reasons as well as for many potential applications.
Optimal control by closed-loop procedures [1,2] is a general technique which is being
used to find effective fields in a number of experimental contexts [3–10]. However,
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achieving control generally does not reveal the mechanism of the controlled dynam-
ics, either from an optimal or suboptimal field. Even in computer simulations, which
exploit full knowledge of the wavefunction, the mechanism by which a control field
achieves its target is often hidden, almost regardless of how the control field is deduced.

Hamiltonian encoding (HE) was originally proposed as a technique for understand-
ing mechanism in the context of computer simulations [11,12]. The ultimate goal of
HE is to directly reveal mechanism in the laboratory, and initial simulations [13] show
that such a procedure is feasible. There are a number of challenges in considering
laboratory based HE. These issues may be classified as either fundamental (e.g., solv-
ing the equations produced by the encoding process) or practical (e.g., operating with
the presence of noise in the control and measurements). This work studies the funda-
mental aspects of laboratory based HE, given an ideal experimental setup, although
some practical issues are also addressed. By working in the ideal limit, the fundamen-
tal procedure for extracting mechanism can be assessed; dealing with imperfections
such as control noise and data errors must build upon this foundation. Any practical
application of HE will necessarily involve at least some physical knowledge of the
specific system under investigation. Such information has the potential to simplify
mechanism extraction. For example, a priori knowledge of forbidden transitions can
reduce the system of equations arising in HE mechanism analysis. However, the form
of such specific knowledge may vary widely. We will not rely on such knowledge in
this work, but we will indicate in some examples how such information may benefit
mechanism analysis.

HE defines mechanism in terms of interaction integrals (also referred to as path-
way amplitudes) arising from a series expansion of the time evolution operator, U (t).
These integrals can be difficult to compute by traditional means and cannot be directly
observed in the laboratory. Earlier work [11,12] on HE described a method to com-
putationally extract these pathway amplitudes. In a computational setting, given the
control field, the Schrödinger equation can be integrated to obtain U (T ) at the final
time T . A family of Hamiltonians H(s) is generated with controls parametrized by the
variable s ≥ 0, such that these encoded Hamiltonians are systematically linked to the
original Hamiltonian H(0). The set of Schrödinger equations driven by this family of
encoded Hamiltonians is solved to generate U (T, s). The mechanism, which underlies
U (T ) = U (T, 0), is extracted from scanning the s dependence of U (T, s).

In the laboratory, control experiments operate using observable information, rather
than direct access to the wavefunction. For example, closed-loop control is typically
conducted in the laboratory to maximize a target observable 〈O〉 at a final time T .
Laboratory based HE has been proposed [14], to operate with similar logic to its com-
putational counterpart, except that the solution to Schrödinger’s equation is provided
experimentally, not computationally. In the laboratory, once an effective control field
E(t) has been identified, a family of encoded control fields E(t, s), s ≥ 0 parametrized
by s would be generated with the constraint E(t, s = 0) ≡ E(t). The variation in the
target observable 〈O(s)〉 would be monitored as a function of s, and the mechanism
information extracted from it. This paper examines the fundamental issues involved
when HE is performed using observable information.

The paper is organized as follows. Section 2 is an introduction to HE by field
modulation. The representation of the control field and three different modulation
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schemes are discussed in Sect. 3. HE associated with observable data entails the solu-
tion of a system of quadratic equations. This paper addresses the formulation of these
equations and their solution. Section 4 discusses the general solvability of the system
of equations arising from HE. One condition for a unique solution, considering that
a solution must exist by virtue of the problem’s physical basis, is that the system be
overdetermined. Overdetermined systems of equations are shown to be the typical
case for HE in Sect. 5. An explicit example of the procedure is presented in Sects. 6,
and 7 considers several algorithmic approaches useful in specific cases of HE. Finally,
conclusions are given in Sect. 8.

2 Hamiltonian encoding using field modulation

This section summarizes the basic concepts of field based HE introduced in [13] to
lay the foundation for the analysis in the subsequent sections. The quantum system
interacts with the electric field generated by a shaped laser pulse. Considering a dipole
interaction, the Hamiltonian may be written as

i h̄
dU

dt
= [H0 − µE(t)]U (1)

where H0 is the field free Hamiltonian and µ is the dipole operator coupling the system
to the control field E(t). The control goal is to move the system from an initial state
|a〉 at t = 0 to a final state |b〉 at the time t = T . The equation of motion for the time
evolution operator in the interaction representation is given by

i h̄
dUI

dt
= −µI (t)E(t)UI , (2)

and for notational simplicity it is understood hereafter that U is in the interaction
representation. Consider the element, Uba = 〈b|U (T )|a〉 corresponding to the transi-
tion from state |a〉 to |b〉, which can be written in Dyson series form as

Uba = 〈b|a〉 +
(

i

h̄

) ∫ T

0
〈b|µI (t1)E(t1)|a〉 dt1

+
(

i

h̄

)2 ∫ T

0

∫ t2

0
〈b|µI (t2)E(t2)µI (t1)E(t1)|a〉 dt1 dt2

+ · · · . (3)

While this expansion is an infinite series, we shall truncate it at some order, N , under
the assumption that terms of order N + 1 and beyond are negligible. The control field
can also be decomposed, using the basis functions εm(t)

E(t) =
∞∑

m=1

cmεm(t). (4)
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In any practical setting, and in the remainder of this paper, the expansion of the elec-
tric field in Eq. 4 will be truncated at some finite value M . In field based HE, control
pathways are defined by interactions between the system and components of the control
field {εm(t)}. The choice of basis functions or field components, εm(t) is, in principle,
arbitrary. However, the number of basis functions M needed to represent the control
field, and hence the nature and number of pathways, can vary greatly, depending on
the choice of basis functions, and certain representations tend to be favored (e.g., a
Fourier basis is typically used in the laboratory and is also mathematically conve-
nient). Control mechanism will always be understood in reference to a representation
or basis, and field based HE reflects this situation [13,15].

Inserting the expanded electric field of Eq. 4 into Eq. 3 yields

Uba = 〈b|a〉 +
(

i

h̄

) M∑
m1=1

∫ T

0
〈b|µI (t1)cm1εm1(t1)|a〉dt1

+
(

i

h̄

)2 M∑
m1=1

M∑
m2=1

∫ T

0

∫ t2

0
〈b|µI (t2)cm2εm2(t2)µI (t1)cm1εm1(t1)|a〉dt1dt2

+ · · · . (5)

Each term in Eq. 5 can be interpreted as the complex valued amplitude of a particular
transition pathway: the first term is the projection of the initial state onto the final state,
the second term is a summation over all M field components εm1(t1) inducing direct
transitions from the state |a〉 to |b〉. The subsequent terms, such as

(
i

h̄

)n ∫ T

0
· · ·

∫ t2

0
〈b|cmn εmn (tn)µI (tn) . . . cm1εm1(t1)µI (t1)|a〉dt1 . . . dtn, (6)

represent higher order transitions induced by multiple interactions with various field
components εm1(t1), . . . , εmn (tn).

HE produces pathways linking |a〉 and |b〉 without distinguishing the order in which
the field components interact with the system. Therefore the field pathway, denoted
(εm1, . . . , εmn ), is defined as the sum of all pathways linking |a〉 to |b〉 via the field com-
ponents εm1 , . . . , εmn , regardless of their order of appearance. This definition makes
no reference to the exact sequence in which the field components cause the transition.
Also, let U n

ba(εm1, . . . , εmn ) denote the amplitude of the field pathway (εm1 , . . . , εmn ),
one term of which is shown in Eq. 6, and the remaining terms have the same form,
but correspond to other permutations of the field components {εm1, . . . , εmn }. For
example, the pathway (εm1, εm2) has the amplitude U 2

ba(εm1 , εm2), given by

U 2
ba(εm1 , εm2) =

(
i

h̄

)2 [∫ T

0

∫ t2

0
〈b|cm2εm2(t2)µI (t2)cm1εm1(t1)µI (t1)|a〉 dt1 dt2

+
∫ T

0

∫ t2

0
〈b|cm1εm1(t2)µI (t2)cm2εm2(t1)µI (t1)|a〉 dt1 dt2

]
. (7)
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This amplitude contains two pathways from |a〉 to |b〉: one in which ε1 is the initial
interaction, and one in which ε2 is the initial interaction. It will not always be necessary
to specify the exact set of interactions, so for brevity, a generic nth order field path-
way will be written as Mn instead of (εm1 , . . . , εmn ), and the corresponding pathway
amplitude will be denoted as U n

ba(Mn). The complete transition element Uba , which
is the sum over all pathway amplitudes of all orders, may then be written

Uba =
∞∑

n=0

∑
Mn

U n
ba(Mn). (8)

The mechanism of the transition from |a〉 to |b〉 is specified by the collection of
pathways with amplitudes of significant magnitude. The complex valued pathway
amplitudes can interact constructively or destructively to produce the overall transi-
tion amplitude Uba .

Each component of the control field may be encoded by a function gm(s), gm(0) =
1, to create a set of control fields, parametrized by s, over the time interval [0, T ]. The
resulting encoded field is

E(t, s) =
M∑

m=1

cmεm(t)gm(s). (9)

For any value of s, it is possible to use E(t, s) to drive the system dynamics over the
interval [0, T ] and find the projection of the final wavefunction onto the target |b〉 as
a function of s (i.e., Uba(s)). In practice, the encoding in Eq. 9 would be achieved by
using the pulse shaper to vary the pixels controlling phase and amplitude in such a
way that the original (unencoded) control field satisfies E(t) ≡ E(t, s = 0). Under
encoding, the phase and amplitude pixels would be adjusted in a coordinated fashion
over a sequence of experiments in which s is varied. The time evolution operator under
the encoded control field is denoted Uba(s), and can be written as in [13],

Uba(s) =
∞∑

n=0

∑
Mn

U n
ba(Mn)Gn

ba(s;Mn), (10)

where

Gn
ba(s;Mn) =

n∏
i=1

gmi (s). (11)

The power of HE lies in the form of Eq. 10 [11]. A suitable choice of the mod-
ulation functions ensures that each pathway amplitude U n

ba(Mn) is associated with
a unique function Gn

ba(s;Mn). The goal of determining mechanism is transformed
from evaluation of the integrals in Eq. 5 to the problem of decomposing Uba(s) along
a set of basis functions, Gn

ba(s;Mn). Mechanism is specified in terms of the signifi-
cant pathway amplitudes U n

ba(Mn), which are uncovered by evaluating Uba(s) over a
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sufficient set of points sr ∈ R
+ and inverting the data stream. This problem, in both dis-

crete and continuous state space settings, has been studied in works on computational
HE [11–16]. However, with laboratory data, direct access to the Hamiltonian and the
wavefunction is not available. Determining the decomposition of Uba(s) in terms of
pathway amplitudes becomes a more difficult process because only |Uba(s)|2 is mea-
surable (as well as other possible observables). Initial simulations show that laboratory
based HE for mechanism extraction is possible [14], and the present paper addresses
the fundamental issues raised by the use of observable information in HE.

3 Representation of the control field

While the representation of the control field is in principle arbitrary, the following
representation has been chosen in order to develop working algorithms

E(t) = A(t)
M∑

m=1

am cos(ωmt + φm). (12)

This is a natural expression representative of the control fields generated by pulse-
shapers in quantum control experiments. The nominal amplitudes {am} and phases
{φm} are assumed to be known, (e.g., from a closed-loop optimization procedure [1–
10]). These same parameters will be modulated about their nominal values during the
encoding process to produce three distinct schemes: amplitude modulation (A), phase
modulation (P), and simultaneous modulation of the control amplitudes and phases
(AP).

3.1 A-modulation

A-modulation works exclusively with the amplitude parameters {am}, to produce the
modulated field form

E(t, s) = A(t)
M∑

m=1

[am gm(s)] cos(ωmt + φm). (13)

Complete knowledge of mechanism in this representation corresponds to computing
all significant amplitudes U n

ba(Mn). Let gm(s) = exp(αms), with αm ∈ R. Other
forms of gm(s) for A-modulation could also be used. One advantage of using an
exponential form is that products of the functions gm(s) are characterized by linear
combinations of the parameters αm . The resulting parametrized fields are

E(t, s) = A(t)
M∑

m=1

am exp(αms) cos(ωmt + φm), (14)
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and the corresponding variation in Uba(s) is

Uba(s) =
∞∑

n=0

∑
Mn

U n
ba(Mn) exp

⎡
⎣

⎛
⎝ n∑

j=1

αm j

⎞
⎠ s

⎤
⎦. (15)

The particular exponential coefficients {αm} are specified by Mn . We assume that
the {αm} are incommensurate, meaning that all of the sums

∑n
j=1 αm j are unique,

at least up to a suitably high order n. Each product Gn
ba(s;Mn) of the modulating

functions gm(s) has the form exp[(∑n
j=1 αm j )s], making the set of all such functions,

{Gn
ba(s;Mn)}, linearly independent. If, for some large value of n the sum

∑n
j=1 αm j

is not unique, then there will be multiple pathway amplitudes associated with a single
modulating function. This situation is not expected to affect the mechanism analysis
because these modulating functions, will generally correspond to high order pathway
amplitudes which typically will be very small.

3.2 P-modulation

P-modulation utilizes just the phases {φm} to produce the encoded field

E(t, s) = A(t)
M∑

m=1

am cos(ωmt + [
φm + γms

]
). (16)

The control field can be written equivalently in exponential form

E(t, s) =
M∑

m=1

exp(iγms) exp(iφm)amε+
m (t) + exp(−iγms) exp(−iφm)amε−

m (t), (17)

where i = √−1. The basis functions of the field are εσ
m(t) = A(t) exp(σ iωmt)/2,

where σ = + or −. The set of frequencies {γm}, which may be chosen at our dis-
cretion, is assumed to be incommensurate. Enumeration requires two indexes: m to
denote the frequency component, and σ to denote the positive and negative frequen-
cies. A typical pathway is (ε

σ1
m1 , . . . , ε

σn
mn ), with amplitude U n

ba(ε
σ1
m1, . . . , ε

σn
mn ), or M�

n
and U n

ba(M�
n ) in the compact notation, where � represents the n-tuple (σ1, . . . , σn).

Equation 10 becomes a Fourier series under P-modulation. This form can be conve-
niently inverted by Fourier transformation, as was done in previous work with com-
puter simulations [11–13,15,16], and it is useful again with observation data [14].

In P-modulation, the modulating function g+
m (s) = exp (iγms), associated with ε+

m
is the inverse of the function g−

m (s) = exp (−iγms), associated with ε−
m . For exam-

ple, the pathway (ε+
1 , ε−

2 , ε+
2 ) has the modulation function exp(i(γ1 − γ2 + γ2)s) =

exp(iγ1s), which is the same as the function corresponding to (ε+
1 ). HE differentiates

between pathways by introducing a unique modulation function for each pathway, but
P-modulation may assign the same modulation function to certain sets of pathways,
thus grouping them together into a pathway class. Such a pathway class is referred to
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as a field composite pathway. For example, (ε+
1 ) and (ε+

1 , ε−
2 , ε+

2 ) belong to a single
field composite pathway. The amplitude of the field composite pathway is the sum of
the complex amplitudes of all the individual pathways within it. Since an interaction
with ε+

n “cancels” an interaction with ε−
n , each pathway class is determined by the

“net” interaction. In the present example, the composite pathway (ε+
1 )∗ contains the

pathways (ε+
1 ), (ε+

1 , ε+
2 , ε−

2 ) and all pathways with a net interaction of ε+
1 , and its

amplitude is denoted by U 1
ba(ε+

1 )∗. Here, ∗ indicates a class of composite pathways.
Extracting mechanism in this representation corresponds to computing the amplitudes
of all significant field composite pathways. The form of Uba(s) is

Uba(s) =
∑

n

∑
M�∗

n

U n
ba(M�∗

n ) exp

⎡
⎣i

⎛
⎝ n∑

j=1

σ jγm j

⎞
⎠ s

⎤
⎦, (18)

where each amplitude can be generated from a Fourier transform of Uba(s). For sta-
bility reasons, P-modulation is likely to be the most convenient scheme in terms of
practical applications.

3.3 AP-modulation

The third possible modulation scheme combines A- and P-modulation into AP-mod-
ulation. In this scheme the encoded control field becomes

E(t, s) = A(t)
M∑

m=1

[
exp(αms)am

]
cos

(
ωmt + [

φm + γms
])

, (19)

which may be written in exponential form

E(t, s) =
m∑

m=1

{
exp((αm + iγm)s) exp(iφm)amε+

m (t)

+ exp((αm − iγm)s) exp(−iφm)amε−
m (t)

}
.

The variation in Uba(s) now becomes

Uba(s) =
∞∑

n=0

∑
M�

n

U n
ba(M�

n ) exp

⎡
⎣i

⎛
⎝ n∑

j=1

σm j γm j

⎞
⎠ s +

⎛
⎝ n∑

j=1

αm j

⎞
⎠ s

⎤
⎦. (20)

Since AP-modulation resolves the control field along the same basis functions as
P-modulation (despite the presence of the A-modulation basis functions), the indi-
vidual pathways are identical. However, AP-modulation will also lift the “degeneracy”
which created field composite pathways in P- modulation. Again consider the pair
of pathways (ε+

1 , ε−
2 , ε+

2 ) and (ε+
1 ). In P-modulation they are both associated with

the modulation function exp(iγ1s). However, in AP-modulation they have distinct
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modulation functions exp((α1 + 2α2 + iγ1)s) and exp((α1 + iγ1)s), respectively.
They are now distinguishable, and the amplitude of each individual pathway can be
extracted. The P-modulation composite pathway amplitudes can be reconstructed
from individual AP-modulation pathway amplitudes by summing up the amplitudes
of all the pathways that contribute to a given field composite pathway.

To appreciate the connection between AP-modulation and A-modulation, con-
sider the four AP-modulation pathways (ε+

1 , ε+
2 ), (ε+

1 , ε−
2 ), (ε−

1 , ε+
2 ), and (ε−

1 , ε−
2 ).

If only A-modulation is applied, each pathway has the same modulation function,
exp(i(α1 + α2)s). This happens because A-modulation encodes both ε+

m and ε−
m with

the same function of s, and hence cannot distinguish between them. All four AP-mod-
ulation pathways belong to the same A-modulation pathway (ε1, ε2). The amplitude
of an A-modulation pathway can be explicitly reconstructed from the AP pathways

U n
ba(Mn) =

∑
�

U n
ba(M�

n ) (21)

where the sum is over all n-tuples � = (σ1, . . . , σn). Therefore, a single A-modulation
pathway corresponds to a pathway class in AP-modulation.

4 Assessing the solutions of the modulated equations

A-, P-, and AP-modulation create large systems of equations in the pathway amplitudes
which must be solved to reveal mechanism. Any observable will be a quadratic form in
the matrix elements of U . In this section we consider the effect of using the observable
|Uba(s)|2 in order to solve for the pathway (or composite pathway) amplitudes. We
show that using the observable form creates classes of equivalent, symmetry related
solutions to these systems of equations. We give a definition for uniqueness and use a
geometric illustration of HE to understand the symmetries which arise in the equations
generated by observable based HE.

As background, consider the case of computer simulations. For all three forms of
modulation we have the relation

Uba(s) =
∞∑

n=0

∑
M†

n

U n
ba(M†

n)Gn
ba(s;M†

n) (22)

where the pathway M†
n may represent either Mn or M�

n , depending on the choice
of modulation scheme. If there are r pathways with nonzero amplitudes, we may
apply the following procedure: evaluate Uba(s) at r points (s1, . . . , sr ), and write the
resultant linear equation

Ax = y, (23)

where A is an r × r matrix with Arq = Gn
ba(sr ;M†

n,q), x is the vector of pathway

amplitudes U n
ba(M†

n,q), y is the vector of calculated data Uba(sr ), and the index q
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has been added to M†
n,q in order to distinguish specific pathways. Since the functions

Gn
ba(s;M†

n,q) are linearly independent we can pick the values sr to create a matrix A
of full rank, and the linear system may then be solved. The independence is a result of
careful construction, and does not follow merely from choosing linearly independent
functions gm(s).1 In the computational setting of HE, which allows access to the wave-
function, one just needs to solve the set of linear equations. The underlying physics
guarantees the existence of a solution, and the linear independence of the modulating
functions guarantees its uniqueness. The only constraining factor is numerical stabil-
ity, and this was not an obstacle in previous numerical simulations [11,13], which
were able to take advantage of the Fourier transform to perform inversion.

In the laboratory one needs to implement a decoding procedure which inverts the
observable data |Uba(s)|2. When |Uba(s)|2 is used to extract mechanism, a quadratic
system of equations

|Uba(s)|2 =
∣∣∣∣∣∣

∞∑
n=0

∑
M†

n

U n
ba(M†

n)Gn
ba(s;M†

n)

∣∣∣∣∣∣
2

, (24)

needs to be solved. This raises questions about the uniqueness of the solutions. The
concept of uniqueness needs to be understood in the context of certain symmetries,
which arise due to the quadratic form of observables in quantum mechanics.

Four assumptions are made about the structure of the mechanism analysis.

Assumption 4.1 Existence: The equations are self consistent and a solution exists.

Assumption 4.2 A Maximum Contributing Order N Exists: All pathways with order
higher than N have negligible amplitude.

Assumption 4.3 The Maximum Contributing Order is Known: N is known a priori.

Assumption 4.4 A Finite Representation of the Electric Field Exists: The electric
field E(t) is exactly resolved into M component functions.

Assumption 4.1 is justified as the presence of an underlying physical mechanism
gives rise to the HE equations. Consistency may only be approximately valid with
real data, which will be contaminated by noise and measurement errors. Assumption
4.2 places a finite limit on the number of contributing pathways. For Assumption 4.3,
a method to determine N is described in [14,16]. It is necessary to know that N is
sufficiently large to produce a complete system of equations and uniquely determine
the solution. If N is larger than necessary, then wasted searching for the extra null
amplitudes can lead to instabilities, especially when dealing with noise contaminated
data. Assumption 4.4 can always be arranged as the field is at our disposal in the
laboratory.

1 An example of a linearly independent set of functions that does not produce a linearly independent set of
products is {1, 1 + x, x2}. The set of products produced by this set includes (1)2, (1)(1 + x), (1)(x2) and
(1 + x)2 = (1 + 2x + x2) = −1(1) + 2(1 + x) + 1(x2).
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4.1 Impact of symmetry on the uniqueness of solutions

The control mechanism is specified by the collection of individual pathways of signifi-
cant magnitude. HE distinguishes between different possible mechanisms by modulat-
ing individual pathway amplitudes. Each mechanistic pathway amplitude is complex
valued and conveniently represented by a vector in the complex plane. The overall
transition amplitude is a single vector, formed by aligning the individual pathway
amplitudes head to tail in the complex plane. In the laboratory, only the absolute value
squared of the overall amplitude is measurable. HE is able to determine the unknown
pathway amplitudes U n

ba(M†
n) by measuring the observable |Uba(s)|2, which is the

left hand side of Eq. 24. If two different mechanisms lead to the same set of mod-
ulated observations, then HE cannot distinguish between them. The ability of HE to
differentiate between distinct mechanisms is shown in Fig. 1. In the figure, the same
unmodulated overall amplitude, Uba in panel A and Ũba in panel C, consists of three
distinct amplitudes. A single AP-modulation scheme is capable of revealing that the
underlying pathway amplitudes (i.e., the mechanisms) are different. There are some
exceptions to this rule; certain symmetry related mechanisms are indistinguishable by
laboratory based HE because the observable |Uba(s)|2 is invariant under these symme-
try transformations. The geometric picture of pathway amplitudes as vectors provides
graphical insight into these symmetries.

If two mechanisms are indistinguishable, then it is necessary that the follow-
ing conditions are satisfied: (i) the lengths of the vectors are the same and (i i)
the relative angles between the vectors representing the individual pathway ampli-
tudes of each mechanism are the same. Geometrically, these conditions mean that
the two mechanisms must be related by an isometry of the plane. Each vector in the
first mechanism, U n

ba(M†
n), must be related to its counterpart in the second mech-

anism, Ũ n
ba(M†

n), by that isometry. There are three isometries of the plane: trans-
lations, rotations and reflections. Translations are not relevant because only mag-
nitude and direction are relevant when pathway amplitudes are identified as
vectors.

Rotations correspond to a global change of phase, i.e. Ũ n
ba(M†

n) = exp[iθ ]U n
ba(M†

n)

for all M†
n . Under the substitution U n

ba(M†
n) → Ũ n

ba(M†
n) the observable is un-

changed because

∣∣∣∣∣∣
∞∑

n=0

∑
M†

n

U n
ba(M†

n)Gn
ba(s;M†

n)

∣∣∣∣∣∣
2

→
∣∣∣∣∣∣

∞∑
n=0

∑
M†

n

Ũ n
ba(M†

n)Gn
ba(s;M†

n)

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣exp[iθ ]

∞∑
n=0

∑
M†

n

U n
ba(M†

n)Gn
ba(s;M†

n)

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣

∞∑
n=0

∑
M†

n

U n
ba(M†

n)Gn
ba(s;M†

n)

∣∣∣∣∣∣
2

. (25)
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A                                    B

C                                    D

Fig. 1 Panel A shows the unmodulated overall amplitude Uba (solid arrow) as the sum of three path-
way amplitudes: U0

ba(0) + U1
ba(ε+) + U1

ba(ε−) (dashed arrows). These three pathway amplitudes

U0
ba(0), U1

ba(ε+), and U1
ba(ε−) define the control mechanism. The circles in all of the panels have the

same radii for comparative referencing. In Panel B, AP-modulation has scaled and rotated the pathway
amplitudes. The amplitude U0

ba(0) is unchanged because it represents the contribution to Uba of 〈a|b〉, which
does not include interaction with the electric field. The measurable quantity in both A and B is the length
of the solid arrow, or equivalently the radius of the inner and outer circles, respectively. A different mecha-
nism is shown in panel C, consisting of the distinct contributing pathway amplitudes Ũ0

ba(0), Ũ1
ba(ε+), and

Ũ1
ba(ε−), and having the same unmodulated overall amplitude Ũba = Uba , as for the mechanism in panel

A. Under the same AP-modulation which transforms panel A to B, now C is transformed into the situation
depicted in panel D. The two mechanisms underlying Uba and Ũba become distinguishable, because the
same modulation applied to both cases results in different measurements (i.e., the length of the bold arrow
in D is greater than the length of the bold arrow in B)

All rotations of a particular solution belong to the same solution class. This class
can be categorized by a single arbitrarily chosen member; a convenient method is
to select one pathway amplitude and give it a real, positive value. Figure 2 depicts
two mechanisms related by rotation in the complex plane by an overall phase angle,
and the figure demonstrates that the mechanisms are not distinguishable under AP-
modulation. Physically, this isometry arises because a physical observable is invariant
to an overall phase of the dynamically generated unitary transformation.

The remaining isometry is reflection, which is taken to be about the real axis because
other reflections are a composition of this reflection and rotation. To find a transfor-
mation resulting in a reflection note that reflection about the real axis is the geometric
equivalent of complex conjugation. Consider the case of P-modulation (the case for
AP-modulation will be analogous). The modulating functions for the first order path-
ways (ε+

m ) and (ε−
m ) are exp[+iγms] and exp[−iγms], respectively. The modulating

functions of these pathways are complex conjugates of each other, and generally the
modulating functions of M�

n and M�̄
n are also complex conjugates, where the super-

script �̄ is the conjugate of superscript �. Recall that in the compact notation, �

represents the n-tuple, (σ1, . . . , σn), and each σm corresponds to the sign of the com-
plex part of the exponent in the modulating function (see for example Eq. 17 and
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C                                 D

A                                 B

Fig. 2 For purposes of clarifying the notion of mechanistic equivalence under rotation by an overall phase,
panels A and B are identical to the corresponding panels in Fig. 1. A new mechanism was created in panel
C by a clockwise rotation (denoted by R) of the mechanism in panel A. The same AP-modulation used
to transform A into B is used again to transform C into D. The resulting observable quantity, the length of
Uba(s) in B and the length of RUba(s) in D, is the same in both cases. This behavior is a general property of
mechanisms related by an overall rotation in the complex plane, and as a consequence the two unmodulated
mechanisms depicted in A and C are not distinguishable

the subsequent paragraph). Thus, if � corresponds to (+,−,−), then �̄ is (−,+,+).
When two pathways are associated with conjugate modulating functions, we will refer
to them as conjugate pathways. To see how reflection creates indistinguishable mech-
anisms under HE, consider the change of variables in which each pathway amplitude
is replaced by the complex conjugate of the amplitude for its conjugate pathway

U n
ba(M�

n ) → Ū n
ba(M�̄

n ). (26)

To see why Eq. 24 is invariant under this transformation, expand the right hand side of
the equation. Each term in the resulting sum will be the product of a coefficient (a pair
of pathway amplitudes) and a function of s (a pair of modulating functions). The coef-
ficient, U n

ba(M�
n )Ū n′

ba(M�′
n′ ) and its replacement under Eq. 26, Ū n

ba(M�̄
n )U n′

ba(M�̄′
n′ ),

both correspond to the same function of s, exp[(A+ i	)s] where 	 = ∑n
j=1 σ jγm j −∑n′

j=1 σ ′
jγm′

j
, and A = ∑n

j=1 αm j + αm′
j

(A = 0 for P-modulation). That is

G(s;M�
n )G(s;M�′

n′ ) = G(s;M�̄
n )G(s;M�̄′

n′ ). (27)

It is also true that if any coefficient appears on the right hand side of Eq. 24, then
so does its replacement (some coefficients are unchanged by Eq. 26, so they replace
themselves). This means that these pairs of coefficients exchange roles when the
substitution from Eq. 26 is applied, and the result is that Eq. 24 is left unchanged.
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A                                 B

C                                 D

Fig. 3 For comparison, panels A and B are identical to the corresponding panels in Fig. 1. A symmetry
related mechanism is shown in panel C, which is related to the mechanism in panel A by reflection about the
real axis. This operation is equivalent to complex conjugation of the pathway amplitudes. AP-modulation
is used to transform A into B. The conjugated form of the same modulation is then applied to C to produce
D. Note that, due to AP-modulation, the conjugate pathways (ε+) and (ε−) exchanged amplitudes under
reflection. The practical effect of this is that Ū1

ba(ε+) is modulated by g−(s) and Ū1
ba(ε−) is modulated

by g+(s). The resulting observable quantity, the length of Uba(s) in B and the length of Ūba(s) in D, is
the same in both cases. This is a general property of mechanisms related by reflection symmetry, and as a
consequence the two unmodulated mechanisms depicted in A and C are physically indistinguishable

Geometrically, this substitution reflects each pathway amplitude about the real axis.
However, each amplitude has not only been reflected, but it has also been reassigned
from one pathway to that pathway’s conjugate. In effect this is an exchange of labels
between the pairs of conjugate pathway amplitudes. The same argument applies to
A-modulation, however, since the modulating functions are real valued, each pathway
is its own conjugate pathway and no relabeling occurs, just reflection. We will refer to
the transformation in Eq. 26 as reflection symmetry, but it is to be understood that it
also includes the exchange of pathway labels between conjugate pathways for P- or
AP-modulation. The reflection symmetry under AP-modulation is depicted in Fig. 3.
The only visible change is that each pathway amplitude seems to have rotated, between
panels C and D, in the direction counter to that between panels A and B. The modula-
tion applied is the same in both cases, but the pairs of conjugate pathway amplitudes
have exchanged roles. The consequence of this is that if a pathway amplitude had been
modulated by Gn

ba(s;M�
n ) = exp[(A + i	)s], then after applying the substitution

from Eq. 26 it will be modulated by Gn
ba(s;M�̄

n ) = exp[(A − i	)s]. The magnitude
of dilation and rotation of the amplitude is the same in both cases, but the direction
that the pathway amplitude rotates due to the modulation is reversed. Sometimes, as
will be shown later, physical insight can be used to lift the exchange of labels caused
by reflection symmetry.
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In summary, for any mechanism, a family of equivalent rotated and conjugated
mechanisms can be generated. The remainder of this work considers two mechanisms
to be unique, if they are not related by any linear combination of these symmetries.

4.2 Extracting pathways from observable data

If there are N pathways with significant amplitudes, there will be N distinct functions
Gn

ba(s;M†
n) in Eq. 22. The right hand side of Eq. 24 will produce all pairwise prod-

ucts of the modulating functions: Gn
ba(s;M†

n)Ḡm
ba(s;M‡

m). While the set of functions

{Gn
ba(s;M†

n)} is linearly independent, the set of all products of these functions may
not share this property. This outcome can happen as not all of these products may be

unique, i.e., Gn
ba(s;M†

n)Ḡm
ba(s;M‡

m) = Gn′
ba(s;M†′

n′)Ḡm′
ba(s;M‡′

m′) does not neces-
sarily imply that n, m, †, and ‡ are equal to their primed counterparts. The number of
distinct products obtained in Eq. 24 depends on the modulation scheme and the partic-
ular pathways which are present. The set of all distinct s-function products is linearly
independent, at least for the exponential modulation functions considered here. As
noted at the beginning of Sect. 4, not all families of linearly independent functions
share this property.

Each distinct product of s functions, Gn
ba(s;M†

n)Ḡm
ba(s;M‡

m) in the expansion of
|Uba(s)|2 corresponds to at least one, but possibly several, pathway products of the

form U n′
ba(M†′

n′)Ū m′
ba (M‡′

m′). Two steps are needed to extract the individual pathway

amplitudes U n
ba(M†

n). The first step is to write |Uba(s)|2 as a linear combination of
the distinct s-function products (dsfp)

|Uba(s)|2 =
∑
dsfp

⎛
⎝ ∑

prime

U n′
ba(M†′

n′)Ū m′
ba (M‡′

m′)

⎞
⎠ Gn

ba(s;M†
n)Ḡm

ba(s;M‡
m)

=
∑
dsfp

kdsfpGn
ba(s;M†

n)Ḡm
ba(s;M‡

m), (28)

where the inner sum is over all primed variables that correspond to pathway amplitude
products which are modulated by Gn

ba(s;M†
n)Ḡm

ba(s;M‡
m). This is a linear equa-

tion, and will yield a unique solution for the coefficients kdsfp, as all of the pairwise
s-function products are mutually independent. However, each coefficient kdsfp may
correspond to more than one pathway product. Determining the coefficients kdsfp by

utilizing the linear independence of the products Gn
ba(s;M†

n)Gm
ba(s;M‡

m), results in
a set of quadratic equations in the pathway amplitudes

kdsfp =
∑
prime

U n′
ba(M†′

n′)Ū m′
ba (M‡′

m′). (29)

Each pathway amplitude may be written as the sum of its real and imaginary parts,
U n

ba(M†
n) = xη + iyη, where η = M†

n is used to unburden the notation. This makes
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Eq. 29 a collection of homogeneous quadratic equations in the real variables {xη, yη}.
The remaining step is to solve this system of equations to obtain the unknown pathway
amplitudes.

The analysis in Sect. 4.1 implies that there are two fundamental symmetries arising
within quantum mechanics that prevent the unique determination of {xη, yη}. The issue
of concern is the possible existence of a second solution {xη′ , yη′ } not related to the
{xη, yη} by any symmetry. The fact (shown in Sect. 5) that HE will generate a heavily
overdetermined system of equations to solve for the mechanistic pathway amplitudes
makes the existence of multiple solutions, unrelated by a symmetry operation, unlikely.

5 Counting the numbers of variables and equations

Generally, more equations than variables are needed to uniquely determine the solution
to a nonlinear system of equations [17], but it is not immediately clear that the modu-
lation schemes will produce overdetermined systems. This section demonstrates that
each modulation scheme can produce more than enough independent equations to
carry out HE. The formulas are derived in the Appendix.

Assumption 4.2 in Sect. 4 states that only pathway amplitudes up to some order N
contribute. Under this assumption, all of the pathway amplitude products in Eq. 29
are of an order lying in the range 0 to 2N . It is convenient to consider using equations
up to order B < 2N , and finding the smallest value of B such that HE generates a
sufficient number of equations. This procedure is employed because the assumption
of a finite cutoff order N is an approximation, and using B < 2N limits potential
contamination from higher order terms. B will be referred to as the utilized order, and
N as the underlying order. B will always lie between N and 2N .

The technique for counting the number of equations and variables is similar for all
three modulation procedures, A, P , and AP . The details vary in each case, as sketched
in the following subsections. The complex value of each pathway amplitude needs to
be taken into account, and a full treatment can be found in the Appendix.

5.1 A-modulation

The number of variables (i.e., twice the number of identifiable pathway amplitudes)
arising from A-modulation depends on M , the number of field components and N ,
the underlying order. The factor of two in the following formula accounts for the sep-
arate real and imaginary components of each pathway amplitude. The total number of
variables is

v = 2
N∑

n=0

(
M − 1 + n

M − 1

)
. (30)
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The number of equations e produced by A-modulation only depends on M and B

e =
B∑

b=0

(
M − 1 + b

M − 1

)
. (31)

Consider the two cases, B = N and B = 2N . In the former case when the under-
lying and utilized orders are equal, the number of variables is twice the number of
equations. This means that B must be greater than N , regardless of the value of M ,
or the system of equations will be underdetermined. However, when B = 2N , the
system is overdetermined for all M except M = 1. If M = 1, and B = 2N , then the
number of variables is always one more than the number of equations, so the system is
underdetermined. This result means that at least two field components are necessary to
produce an overdetermined system. In practice M may be much larger than 1 (possibly
even ∼102 or more). A significant property of Eqs. 30 and 31 occurs in the limit of
large M . If M > N 2 + N + 1, then it suffices to use B = N + 1 in order to obtain
more equations than variables.

It is possible to verify these formulas in low order cases by exhaustively enumerating
the equations and variables. For an explicit example let M = 2, with the A-modulation
functions exp[αms] and m ∈ {1, 2}. If N = 2, then the twelve variables predicted by
Eq. 30 correspond to the real and imaginary parts of the pathway amplitudes with mod-
ulating exponents 0, α1, α2, 2α1, α1 + α2, and 2α2. If B = 3, then Eq. 31 predicts ten
equations. Upon expanding Eq. 24, 10 unique exponents arise: 0, α1, α2, 2α1, α1 +
α2, 2α2, 3α1, 2α1 + α2, α1 + 2α2, and 3α2. This approach was used to verify the
expressions above for all cases (M, N , B) ∈ {1 . . . 5} × {1 . . . 5} × {N . . . 2N }.

5.2 AP-modulation

Counting the variables produced by AP-modulation is very similar to that of
A-modulation. Consider, for example, the (ε1, ε2) pathway produced by A-modu-
lation, which splits into four pathways under AP-modulation, (ε+

1 , ε+
2 ), (ε+

1 , ε−
2 ),

(ε−
1 , ε+

2 ), and (ε−
1 , ε−

2 ). Splitting εm into ε+
m and ε−

m effectively doubles the number
of field components. The total number of variables is

v = 2
N∑

n=0

(
2M − 1 + n

2M − 1

)
, (32)

which is Eq. 30 with M replaced by 2M . The same argument holds true for the number
of equations

e =
B∑

b=0

(
2M − 1 + b

2M − 1

)
. (33)

The results of the extremal cases B = N and B = 2N are the same as before, except
now B = 2N is sufficient even in the case M = 1. Also, B = N +1 will create an over-
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determined system if M > (N 2+N +1)/2. As with the A-modulation case, the formu-
las in this section were independently verified through computational enumeration of
the variables and equations in all cases (M, N , B) ∈ {1 . . . 5}×{1 . . . 5}×{N . . . 2N }.

5.3 P-modulation

While A- and AP-modulation yielded nearly identical formulas for the numbers of
variables and equations, P-modulation presents a distinct analysis. The same field
component doubling as in AP-modulation occurs, therefore there are 2M compo-
nents. P-modulation defines field composite pathways in terms of “net” interactions
with field components. Therefore, each field composite pathway may contain either
ε+

m or ε−
m , but not both. The final expression for the number of variables is

v = 2

⎛
⎝1 + 2M +

N∑
n=2

min(M,n)∑
k=1

2k
(

M
k

)(
n − 1
k − 1

)⎞
⎠ , (34)

where min(M, n) ensures that ε+
j and ε−

j are not simultaneously selected. The number
of equations is

e = 1 + 2M +
B∑

b=2

min(M,b)∑
k=1

2k
(

M
k

) (
b − 1
k − 1

)
. (35)

As with A-modulation, B = N is not sufficient, because it implies that the number
of variables is twice the number of equations. Again, B = 2N is sufficient for all
values of M , as is B = N + 1 in the limit of large M . The formulas for the number of
variables and equations were again verified computationally for the cases (M, N , B) ∈
{1 . . . 5} × {1 . . . 5} × {N . . . 2N }.

The analysis above completes the case for establishing the existence of overdeter-
mined sets of equations in observable based HE. We shall now look at the general
solution of a model system, and then consider a more specific example.

6 Illustration

6.1 General solution to a model system

This section presents a simple example of HE, including its analytic solution. The
case under consideration is (M, N , B) = (2, 1, 2) using AP-modulation. The expres-
sions in Sect. 5.2 show that the system has 2 × 5 = 10 variables and 15 equa-
tions. The variables are the real and imaginary parts of the pathway amplitudes
{U 0

ba(0), U 1
ba(ε+

1 ), U 1
ba(ε−

1 ), U 1
ba(ε+

2 ), U 1
ba(ε−

2 )}; here (0) indicates the non-
interacting, and therefore unmodulated, zeroth order pathway, 〈a|b〉. Equation 24
becomes
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|Uba(s)|2 =
∣∣∣U 0

ba(0) exp[0s] + U 1
ba(ε+

1 ) exp[(α1 + iβ1)s]
+U 1

ba(ε−
1 ) exp[(α1 − iβ1)s] + U 1

ba(ε+
2 ) exp[(α2 + iβ2)s]

+U 1
ba(ε−

2 ) exp[(α2 − iβ2)s]
∣∣∣2

. (36)

After expanding the right hand side of Eq. 36, the result is a specific instance of Eq.
28, which is a linear system, Au = v, in the pathway products. Here A, u, and v have
the following components

uq =
∑

( j,k)∼(A+i	)q

U 1
ba(ε

σ j
m j )Ū

1
ba(εσk

mk
), (37)

Arq = exp[((ασ j
j + α

σk
k ) + i(γ

σ j
j − γ

σk
k ))sr ] = exp[(A + i	)qsr ], (38)

vr = |Uba(sr )|2. (39)

Each pair ( j, k) corresponds to an exponent (A + i	)q , and the sum in Eq. 37 is over
all ( j, k) that produce (A + i	)q .

Fully expanded, each modulated observation vr = |Uba(sr )|2 is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp[0]
exp[2α1sr ]
exp[2α2sr ]

exp[(α1 − iβ1)sr ]
exp[(α1 + iβ1)sr ]
exp[(α2 − iβ2)sr ]
exp[(α2 + iβ2)sr ]

exp[(2α1 + 2iβ1)sr ]
exp[(2α1 − 2iβ1)sr ]
exp[(2α2 + 2iβ2)sr ]
exp[(2α2 − 2iβ2)sr ]

exp[((α1 + α2) + i(β1 + β2))sr ]
exp[((α1 + α2) − i(β1 + β2))sr ]
exp[((α1 + α2) + i(β1 − β2))sr ]
exp[((α1 + α2) − i(β1 − β2))sr ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U 0
ba(0)Ū 0

ba(0)

U 1
ba(ε+

1 )Ū 1
ba(ε+

1 ) + U 1
ba(ε−

1 )Ū 1
ba(ε−

1 )

U 1
ba(ε+

2 )Ū 1
ba(ε+

2 ) + U 1
ba(ε−

2 )Ū 1
ba(ε−

2 )

U 0
ba(0)Ū 1

ba(ε+
1 ) + U 1

ba(ε−
1 )Ū 0

ba(0)

U 1
ba(ε+

1 )Ū 0
ba(0) + U 0

ba(0)Ū 1
ba(ε−

1 )

U 0
ba(0)Ū 1

ba(ε+
2 ) + U 1

ba(ε−
2 )Ū 0

ba(0)

U 1
ba(ε+

2 )Ū 0
ba(0) + U 0

ba(0)Ū 1
ba(ε−

2 )

U 1
ba(ε+

1 )Ū 1
ba(ε−

1 )

U 1
ba(ε−

1 )Ū 1
ba(ε+

1 )

U 1
ba(ε+

2 )Ū 1
ba(ε−

2 )

U 1
ba(ε−

2 )Ū 1
ba(ε+

2 )

U 1
ba(ε+

1 )Ū 1
ba(ε−

2 ) + U 1
ba(ε+

2 )Ū 1
ba(ε−

1 )

U 1
ba(ε−

2 )Ū 1
ba(ε+

1 ) + U 1
ba(ε−

1 )Ū 1
ba(ε+

2 )

U 1
ba(ε+

1 )Ū 1
ba(ε+

2 ) + U 1
ba(ε−

2 )Ū 1
ba(ε−

1 )

U 1
ba(ε+

2 )Ū 1
ba(ε+

1 ) + U 1
ba(ε−

1 )Ū 1
ba(ε−

2 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(40)

After choosing 15 values s0 = 0 through s14, evaluating A directly and v by measuring
|Uba(sr )|2, the resulting linear system may be solved to find the values uq . Next, let

U n
ba(ε

σ j
m j ) = x

σ j
m j + iyσ j

m j and the result is the following system of quadratic equations
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u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
0 + y2

0
x0(x+

1 + x−
1 ) + y0(y+

1 + y−
1 )

x0(x+
2 + x−

2 ) + y0(y+
2 + y−

2 )

x0(−y+
1 + y−

1 ) + y0(x+
1 − x−

1 )

x0(−y+
2 + y−

2 ) + y0(x+
2 − x−

2 )

(x+
1 )2 + (y+

1 )2 + (x−
1 )2 + (y−

1 )2

(x+
2 )2 + (y+

2 )2 + (x−
2 )2 + (y−

2 )2

x+
1 x−

1 + y+
1 y−

1
x+

2 x−
2 + y+

2 y−
2−x+

1 y−
1 + x−

1 y+
1−x+

2 y−
2 + x−

2 y+
2

x+
1 x+

2 + y+
1 y+

2 + x−
1 x−

2 + y−
1 y−

2−x+
1 y+

2 + y+
1 x+

2 + x−
1 y−

2 − y−
1 x−

2
x+

1 x−
2 + y+

1 y−
2 + x−

1 x+
2 + y−

1 y+
2−x+

1 y−
2 + y+

1 x−
2 + x−

1 y+
2 − y−

1 x+
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

This quadratic system of equations has an analytic solution, which is unique up to the
symmetries discussed in Sect. 4.1. To solve the system, we may first fix the overall
phase by setting y0 = 0 and x0 = +√

u0. From this foundation, the equations for
u1 through u10 can be used to determine the following reflection related solutions in
terms of the parameters k±

j

k±
1 = (u5 ±

√
u2

5 − 4(u2
7 + u2

9))/2 (42)

k±
2 = (u6 ±

√
u2

6 − 4(u2
8 + u2

10))/2

y0 = 0 (43)

x0 = +√
u0

x−
1 = k±

1

u0

(u1u7 − u3u9 − u1k±
1 )x0 + (u1u9 + u3u7 + u3k±

1 )y0

u2
7 + u2

9 − (k±
1 )2

y−
1 = −k±

1

u0

(u3u7 + u1u9 + u3k±
1 )x0 + (u3u9 − u1u7 + u1k±

1 )y0

u2
7 + u2

9 − (k±
1 )2

x−
2 = k±

2

u0

(u2u8 − u4u10 − u2k±
2 )x0 + (u2u10 + u4u8 + u4k±

2 )y0

u2
8 + u2

10 − (k±
2 )2

y−
2 = −k±

2

u0

(u2u10 + u4u8 + u4k±
2 )x0 + (u4u10 − u2u8 + u2k±

2 )y0

u2
8 + u2

10 − (k±
2 )2

x+
1 = (u7x−

1 − u9 y−
1 )/k±

1
y+

1 = (u9x−
1 + u7 y−

1 )/k±
1

x+
2 = (u8x−

2 − u10 y−
2 )/k±

2

y+
2 = (u10x−

2 + u8 y−
2 )/k±

2 .
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This was derived assuming that all of the pathways present are non-zero. The reflection
symmetry will be fixed by selecting k+

j or k−
j for j = 1, 2, and the equations which

have not yet been used (those for u11 through u14) will determine the sign choice for
k±

j in Sect. 6.2.
Reflection symmetry is naturally present here. The mechanism cannot be conclu-

sively defined as the set of five pathway amplitudes; {U 0
ba(0), U 1

ba(ε+
1 ), U 1

ba(ε−
1 ),

U 1
ba(ε+

2 ), U 1
ba(ε−

2 )}, as well as {Ū 0
ba(0), Ū 1

ba(ε+
1 ), Ū 1

ba(ε−
1 ), Ū 1

ba(ε+
2 ), Ū 1

ba(ε−
2 )} each

form an acceptable mechanism. In a specific instance of these equations, with values
drawn from a laboratory experiment, one would find two complex values correspond-
ing to U 1

ba(ε+
j ) and U 1

ba(ε−
j ). However, it would not be possible to decide which

value should be assigned to a particular pathway amplitude. To resolve this issue con-
sider the set, {U 0

ba(0), U 1
ba(ε+

1 ) + U 1
ba(ε−

1 ), U 1
ba(ε+

2 ) + U 1
ba(ε−

2 )} defining a reduced
mechanism. If this set is used to define the reduced mechanism, then the ambiguity
is removed regarding the reflection symmetry exchange of labels, i.e., it is no longer
possible to mistakenly identify U 1

ba(ε+
i ) as U 1

ba(ε−
i ). To obtain U 1

ba(ε+
1 ) + U 1

ba(ε−
1 ),

one may solve for U 1
ba(ε+

1 ) and U 1
ba(ε−

1 ) separately and then sum the two values. The
simple reflection symmetry will persist, but the labeling of pathway amplitude classes
will be certain.

The solution derived in this section is readily extended to any higher value of M .
It is significantly more difficult to extend it to higher order pathways (larger values
of N ) and obtain analytic solutions. Larger values of M and N greatly increase the
number of terms involved in Eqs. 40 and 41, but do not alter their basic structure.

6.2 Symmetries arising in the solution

This section contains a numerical solution to the example in the previous section in
order to illustrate the fundamental symmetries discussed previously in Sect. 4.1. The
true mechanism in this example was produced by randomly selecting values for each
amplitude U n

ba(ε
σ j
m j ), which are listed in the final column of Table 1. The true solution

was then inserted into the right hand side of Eq. 40 and used to produce observable
values |Uba(sr )|2. Once the observable data was produced, the mechanism extraction
process was performed in the same way it would be with laboratory data.

Table 1 Pathway amplitude values for the numerical solution and the true solution

Pathway amplitude Numerical solution Numerical solution with rotation True solution

U0
ba(0) 0.2356+0.0000i −0.2039 + 0.1180i −0.2040−0.1180i

U1
ba(ε+

1 ) −0.2722−0.9543i −0.4115 + 0.1136i −0.4115−0.1136i

U1
ba(ε−

1 ) 0.4131+0.1077i 0.7134 + 0.6900i 0.7134−0.6900i

U1
ba(ε+

2 ) 0.2620+0.4492i 0.2440 − 0.0673i 0.2440+0.0672i

U1
ba(ε−

2 ) −0.2449−0.0639i −0.4517 − 0.2577i −0.4517+0.2577i

In the third column, each pathway amplitude in the numerical solution has been rotated by an overall phase
which was chosen to align the pathway amplitude U0

ba(0) with the true solution
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The values of uq are found by solving the linear system in Eqs. 37–39. The condi-
tion number of the matrix Ar,q depends on the values α j , and the range over which s
is allowed to vary. In this example α1 = 1/10, α2 = √

2/10, β1 = 1, β2 = √
2, and

s ∈ [0, 2π ]. These values ensure that the exponents which result from modulation
and squaring are incommensurate up to an acceptably high order of pathway prod-
ucts. Next, the complex pathway products, (x

σ j
j + iy

σ j
j )(xσk

k + iyσk
k ), were expanded,

and the real and imaginary parts were identified to produce the system of quadratic
equations, Eq. 41. With the values uq in hand, the solution in Eq. 43 was evalu-
ated. In this example, the following parameters were used to determine the solution:
y0 = 0, x0 = √

u0, k+
1 , and k+

2 . All of the equations in Eq. 41 were used to verify
the solution. A very small, but non-zero numerical error was present in each equation.
The numerically derived pathway values are printed in the second column of Table 1.

The pathways in the second and fourth columns of Table 1, respectively, correspond-
ing to the numerically derived and true solutions, are difficult to compare because an
overall phase difference is present. Since rotations generate equivalent solutions to
the quadratic system, we may choose one pathway as a reference, (0) in this case, and
rotate all of the derived pathways by an angle so that the derived pathway amplitude
U 0

ba(0) and the true pathway amplitude U 0
ba(0) coincide. The result of rotating all of

the derived pathways by −2.617 radians is listed in column three of Table 1, and it
clearly shows agreement with the true solution. Another convenient and equivalent
measure is to specify the magnitudes and relative angles between pathways.

Table 1 reveals that the parameter choice (k+
1 , k+

2 ) yields the true solution, and not
its reflected counterpart. If the parameters (k−

1 , k−
2 ) are used instead, then the derived

mechanism is the reflected version of the true solution. If either pair of “mixed sign”
parameters (k+

1 , k−
2 ) or (k−

1 , k+
2 ) are used, however, the extra equations (those for u11

through u14) are not satisfied, eliminating these possibilities. It is important to note that
both “same sign” choices are consistent with the true mechanism and lead to distinct
symmetry related solutions which completely satisfy the system of Eqs. 41.

One way to lift the exchange component of the reflection symmetry is to sum the
pairs of conjugate pathways which cause the ambiguity, as suggested at the end of
Sect. 6.1. Magnitude and angle values for the amplitudes of the combined pathways
(0), (ε+

1 ) + (ε−
1 ), and (ε+

2 ) + (ε−
2 ) are presented in Table 2.

Table 2 Composite pathway magnitudes and relative angles for the numerical solution and the true solution

Pathway amplitude Numerical solution True solution Numerical solution True solution

Magnitude Angle (cosine)

U0
ba(0) 0.2356 0.2356 1 1

U1
ba(ε+

1 ) + U1
ba(ε−

1 ) 0.8583 0.8583 0.1642 0.1642

U1
ba(ε+

2 ) + U1
ba(ε−

2 ) 0.3856 0.3856 0.0445 0.0445

The magnitude and cosine of the angle relative to the U0
ba(0) pathway amplitude are printed instead of the

complex valued amplitudes themselves. The magnitudes and relative angles are invariant to overall phase,
so no corrective alignment is needed as in Table 1
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7 Some specific cases

Given a specific system of quadratic equations, algorithmic methods, such as Gröbner
Basis techniques, could be used to simultaneously establish uniqueness and construct
the solution [18–20]. The computational complexity of these methods render them
impractical in this setting where the number of variables involved can be large. How-
ever, in some cases the actual system of equations is considerably less involved. Often,
physical knowledge of the system can eliminate a number of pathways (e.g., those
representing forbidden transitions) and greatly simplify the resultant system of equa-
tions.

Systems in which either a pathway, or its conjugate pathway contribute (but not
both), present a case which can be treated by an efficient algorithm. One example
of a physical circumstance which leads to such a case is the rotating wave approxi-
mation (RWA), which has previously been considered in connection with illustrating
HE [11]. Consider a system under AP-modulation. The effect of eliminating a path-
way or its conjugate is to reduce the number of variables in the quadratic system. In
the following example each pathway in which ε−

m appears will have zero amplitude.
In addition to reducing the dimensionality of the problem, the RWA decouples the
quadratic equations in a way that essentially makes the system triangular.

Consider an example in which N = 1, M = 2, and B = 2. Discarding the pathway
amplitudes U 1

ba(ε−
1 ) and U 1

ba(ε−
2 ), the remaining unknown pathway amplitudes are

U 0
ba(0), U 1

ba(ε+
1 ), and U 1

ba(ε+
2 ). There is one zeroth order equation

U 0
ba(0)Ū 0

ba(0) = u0. (44)

We may readily solve this equation, and select the overall phase, by setting y0 = 0
and x0 = +√

u0. There are four first order equations

U 0
ba(0)Ū 1

ba(ε+
1 ) = u1 (45)

U 1
ba(ε+

1 )Ū 0
ba(0) = ū1 (46)

U 0
ba(0)Ū 1

ba(ε+
2 ) = u2 (47)

U 1
ba(ε+

2 )Ū 0
ba(0) = ū2 (48)

Substituting x0 + iy0 = U 0
ba(0) into these equations results in a linear system of four

equations in the four unknowns, U 1
ba(εσ

m) = xσ
m+iyσ

m . This scheme can be extended for
any value of N and M . At each order, every term is a product containing an unknown
pathway with an already computed, lower order pathway, making all of the equations
linear. This approach is not possible in the general case because the analogous linear
system at each order is underdetermined.

This sequential solution approach applies to each successive order because only
one new variable is introduced in each equation. However, this algorithm is limited
to P- and AP-modulation with conjugate pathways removed. The elimination of
certain pathways from consideration by physical reasoning is most helpful, and has
been used in other HE work [14]. Following the work in [14], a discrete quantum
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system with five states is considered here. A genetic algorithm was used to deter-
mine a control field which transferred the population from the first state to the fifth
state (|1〉 → |5〉), with a total yield of 83%. The control field was built from six
components, which in turn were each split into two additional components under
P-modulation: ε

σ1
1 , . . . , ε

σ6
6 . Five significant field composite pathways were deter-

mined as (ε−
6 , ε−

1 )∗, (ε−
5 , ε−

2 )∗, (ε−
4 , ε−

3 )∗, (ε−
5 , ε−

1 , ε−
1 )∗ and (ε−

6 , ε−
2 , ε+

1 )∗. P-mod-
ulation produced six equations in these five unknowns

U 2
51((ε

−
6 , ε−

1 )∗)Ū 2
51((ε

−
5 , ε−

2 )∗) = 0.072 − 0.015i

U 2
51((ε

−
5 , ε−

2 )∗)Ū 2
51((ε

−
4 , ε−

3 )∗) = 0.076 + 0.036i

U 2
51((ε

−
4 , ε−

3 )∗)Ū 2
51((ε

−
6 , ε−

1 )∗) = 0.081 − 0.020i

U 2
51((ε

−
4 , ε−

3 )∗)Ū 3
51((ε

−
5 , ε−

1 , ε−
1 )∗) = 0.009 − 0.037i

U 2
51((ε

−
4 , ε−

3 )∗)Ū 3
51((ε

−
6 , ε−

2 , ε+
1 )∗) = 0.015 + 0.036i

U 3
51((ε

−
6 , ε−

2 , ε+
1 )∗)Ū 3

51((ε
−
5 , ε−

1 , ε−
1 )∗) = 0.015 − 0.002i. (49)

Such systems of equations are typical in HE, and are much less complex than the
more general case in Sect. 6.1. This overdetermined system of equations may be
solved [14], and the complex values of the pathway amplitudes are {U 2

51((ε
−
6 , ε−

1 )∗),
U 2

51((ε
−
5 , ε−

2 )∗), U 2
51((ε

−
4 , ε−

3 )∗), U 3
51((ε

−
5 , ε−

1 , ε−
1 )∗), U 3

51((ε
−
6 , ε−

2 , ε+
1 )∗)}={0.270,

0.267+0.055i, 0.300−0.047i, 0.000−0.123i, 0.024−0.121i}. The pathways asso-
ciated with these amplitudes account for a yield of about 80%, which is close to the
overall yield of 83%.

The overall phase was selected by setting the amplitude U 2(ε−
6 , ε−

1 )∗ to be real and
positive. A physically motivated choice between solutions related by reflection symme-
try was made. However, the form of |U51(s)|2 could also have been attributed to a mech-
anism consisting of the conjugate composite pathways (ε+

6 , ε+
1 )∗, (ε+

5 , ε+
2 )∗, (ε+

4 ,

ε+
3 )∗, (ε+

5 , ε+
1 , ε+

1 )∗ and (ε+
6 , ε+

2 , ε−
1 )∗. The set of amplitudes would then have been

{0.270, 0.267 − 0.055i, 0.300 + 0.047i, 0.000 + 0.123i, 0.024 + 0.121i}.

8 Conclusions

This paper considers some fundamental issues occurring in mechanism extraction from
observable quantum control data. As a result of the quadratic nature of observables
in quantum mechanics, two fundamental symmetries arise due to the global phase
and reflection. In general the number of equations obtained through the process of
encoding is much larger than the number of variables to be extracted. Therefore, it is
unlikely that multiple solutions exist, except those which are related to each other by
simple symmetries.

It is necessary to address the validity of the assumptions made about the laboratory
setting in order to realize HE experimentally. One significant idealized assumption is
that the observed data is free of noise, which will not be the case in the laboratory.
Noisy data will likely create an inconsistent system of equations. A solution in this
context will then mean a set of pathway amplitudes which minimizes the mean square
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error in the equations. An analysis of the impact of noise on mechanism determination
may be found in [13,14].

Another major assumption is that any proposed modulation scheme can be realized
experimentally. In practice there will be a limit on the amount of information that
can be reliably encoded into the field by the pulse shaper. For example, there will be
limitations on the values of the functions g(s). An experimental setup that uses an
8-bit controller for phase can divide the range [0, 2π ] into 256 intervals. This will
limit the resolution of the modulation functions over s, and therefore the quality of
pathway amplitudes that can be extracted. Realistic laboratory conditions can limit
the accuracy of the derived mechanisms; these issues are practical considerations, but
not fundamental barriers to employing HE. This paper shows that the basis of HE is
well defined and that future applications of HE in the laboratory may be approached
with an assurance on the foundations of the technique.

Acknowledgments The authors acknowledge support from DOE.

Appendix

This appendix derives the formulas which appear in Sect. 5. Pathway amplitudes
are each identified by unique s-functions which arise during modulation. In Sect.
5 exponential functions were used to construct the composite s-functions, and we
may count the number of unique exponents created by modulation in order to count
pathways. The exponents themselves are sums (not products), and thus the counting
problem reduces to counting the number of unique ways to achieve these sums up
to the underlying order N for the variables, and up to the observed order B for the
equations. In particular, each exponent that it is possible to create from the s-functions
will correspond to an actual pathway amplitude or product of pathway amplitudes.
Each exponent is a linear combination of the modulating coefficients with integer
coefficients. For example, the pathway (ε1, ε2, ε1) under A-modulation corresponds
to the modulation exponent 2α1 + α2. Let the order of the exponent be the same
as the order of the pathway, which is three in this example. For a given order n,
the number of ways to produce a unique exponent is related to the number of ways
to choose n modulating coefficients, with replacement, from the set of all available
coefficients.

A-modulation

The real and imaginary components of each pathway amplitude are treated as two
separate real variables. The total number of variables is equal to twice the number of
pathways of all orders from 0 to N . To count the number of contributing pathways
of order n ∈ {0, N }, consider the combinatorial problem of distributing n identical
balls in M bins, where M is the number of field components available for modulation.
A ball placed in the mth bin represents one contribution of εm to the pathway. The
problem reduces to choosing n objects, with replacement, from M , and the solution is
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(
M − 1 + n

M − 1

)
. Summing over all orders n and multiplying by 2 (to account for real

and imaginary parts) gives the number of variables

v = 2
N∑

n=0

(
M − 1 + n

M − 1

)
, (A.1)

which is Eq. 30.
For each b ∈ {0, . . . , B} there will be a single equation for each unique exponent

of order b. The equations are not split into real and imaginary parts as the variables
were, and there are two reasons for this choice. First, some of the equations are strictly
real, and the imaginary part would yield only the trivial equation 0 = 0. Second, the
conjugate of each equation is itself one of the equations that will appear, and conjugate
equations are independent. As with the number of variables, the number of equations at
a given observed order b, is equivalent to filling M bins with b balls, with replacement.
The total number of equations from A-modulation is

e =
B∑

b=0

(
M − 1 + b

M − 1

)
, (A.2)

which is Eq. 31.
To show that the extremal cases produce overdetermined systems, first let B = 2N .

The inequality

(
a + t

a

)
<

(
a + t + τ

a

)
(assuming a > 0 and τ > 0) shows that

2
T∑

t=0

(
a + t

a

)
<

2T∑
t=0

(
a + t

a

)
, (A.3)

and thus the system is overdetermined.
For the case B = N + 1, first note that for T (T + 1) < a,

(T + 1)
(a + T )!

T !a! <
(a + T + 1)!
(T + 1)!a! , (A.4)

so

T∑
t=0

(
a + t

a

)
< (T + 1)

(
a + T

a

)
<

(
a + T + 1

a

)
, (A.5)

therefore

2
T∑

t=0

(
a + t

a

)
=

T∑
t=0

(
a + t

a

)
+

T∑
t=0

(
a + t

a

)
(A.6)
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<

T∑
t=0

(
a + t

a

)
+

(
a + T + 1

a

)
(A.7)

=
T +1∑
t=0

(
a + t

a

)
(A.8)

If we replace a by M − 1, and T by N then for N (N + 1) < M − 1 or

N 2 + N + 1 < M, (A.9)

then the system is shown to be overdetermined.

AP-modulation

The case of AP-modulation is nearly identical to that of A-modulation. The difference
is that the number of field components is effectively doubled by splitting εm into ε+

m
and ε−

m . The remaining arguments are analogous to the A-modulation case.

P-modulation

P-modulation presents a new challenge because pathway classes, not individual path-
ways are the objects of interest. Again, imagining balls being placed in bins, the new
features in the problem occur when a pair of bins corresponding to ε+

m and ε−
m are

both filled. The P-modulation pathway classes refer only to net interactions with field
components, and contributions to ε+

m and ε−
m cancel with each other. These pairs of

bins must be grouped together because they cannot both be filled, so only up to M
field components out of the 2M total components may be chosen simultaneously.

The cases of zero or one ball (1 and 2M configurations, respectively) do not present
any pairing problems, so these two terms are collected and written separately (1+2M).
Now consider M bins, where bin m represents either ε+

m or ε−
m . If there are t ≥ 2 balls,

consider the case that exactly k bins are filled with the t balls. There are

(
M
k

)
ways

to pick k bins, and

(
k − 1 + (t − k)

k − 1

)
=

(
t − 1
k − 1

)
ways to fill them such that at least

one ball is in each bin. Finally, since each of the k bins can represent either the + or
the − component an extra factor of 2k is required. The resulting expressions are

v = 2

⎛
⎝1 + 2M +

N∑
n=2

min(M,n)∑
k=1

2k
(

M
k

) (
n − 1
k − 1

)⎞
⎠ , (A.10)
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where min(M, n) ensures that ε+
m and ε−

m are not simultaneously selected, and,

e = 1 + 2M +
B∑

b=2

min(M,b)∑
k=1

2k
(

M
k

) (
b − 1
k − 1

)
, (A.11)

which are Eqs. 34 and 35, respectively.
The proofs that, for large M, B = 2N and B = N + 1 are sufficient conditions

for overdetermining the system requires additional consideration. First, if M = 1 and
B = 2N , one has that v = e + 1. Consider then only M ≥ 2. We wish to show that

2

⎛
⎝1 + 2M +

T∑
t=2

min(M,t)∑
k=1

2k
(

M
k

)(
t − 1
k − 1

)⎞
⎠

< 1 + 2M +
2T∑
t=2

min(M,t)∑
k=1

2k
(

M
k

) (
t − 1
k − 1

)
(A.12)

or equivalently

(1 + 2M) +
T∑

t=2

min(M,t)∑
k=1

2k
(

M
k

) (
t − 1
k − 1

)

<

2T∑
t=T +1

min(M,t)∑
k=1

2k
(

M
k

) (
t − 1
k − 1

)
. (A.13)

After summation over k, each side of the inequality contains T terms where 1 + 2M
is considered to be the first term on the left hand side. We will show term-by-term that
the left hand side is less than the right hand side. Examine the first term on the left
hand side of Eq. A.13,

1 + 2M < min(M, T + 1)2M

< min(M, T + 1)

(
21

(
M
1

)(
T
0

))

<

min(M,T +1)∑
k=1

2k
(

M
k

)(
T

k − 1

)
.

Now compare general terms corresponding to t = t ′ > 0,

(
t ′ − 1
k − 1

)
<

(
T + 1 + t ′ − 1

k − 1

)

min(M,t ′)∑
k=1

2k
(

M
k

) (
t ′ − 1
k − 1

)
<

min(M,T +1+t ′)∑
k=1

2k
(

M
k

) (
T + 1 + t ′ − 1

k − 1

)
.
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To show that B = N + 1 is sufficient to ensure an overdetermined system in the
limit of large M , begin with the following inequality

(T + 1)! (M − (T + 1))!
(M − 2)!

1 + 2M

M(M − 1)
+ C

(T + 1)

(M − T )
< 1. (A.14)

To see this, hold T and C constant, then both terms on the left hand side may be made
as small as desired by increasing M . After some manipulation the inequality becomes

(T + 1)!(M − (T + 1))!
M ! (1 + 2M) + C

(T + 1)!(M − (T + 1))!
T !(M − T )! < 1. (A.15)

Now multiply both sides by

(
M

(T + 1)

)
and replace C with T 2T (u1 − u2).

(1 + 2M) + T 2T (u1 − u2)

(
M
T

)
<

(
M

T + 1

)

(1 + 2M) +
T∑

k=1

2k(u1 − u2)

(
M
T

)
< 2T +1

(
M

T + 1

)

(1 + 2M) +
T∑

k=1

2k
(

M
k

)
u1 < 2T +1

(
M

T + 1

)
+

T∑
k=1

2k
(

M
k

)
u2.

(A.16)

Let u1 = ∑T
t=2

(
t − 1
k − 1

)
and u2 =

(
T

k − 1

)

(1 + 2M) +
T∑

k=1

2k
(

M
k

) T∑
t=2

(
t − 1
k − 1

)
<

T +1∑
k=1

2k
(

M
k

) (
T

k − 1

)
(A.17)

(1 + 2M) +
T∑

t=2

t∑
k=1

2k
(

M
k

)(
t − 1
k − 1

)
<

T +1∑
k=1

2k
(

M
k

) (
T

k − 1

)
. (A.18)

Since M may be arbitrarily large and t is bounded, one may choose M large enough so
that min(M, t) = t . This makes the left and right hand sides of Eq. A.18 equivalent to
the original expressions for the number of variables and equations, respectively. That
is, for large M

(1 + 2M) +
T∑

t=2

min(M,t)∑
k=1

2k
(

M
k

) (
t − 1
k − 1

)
<

T +1∑
t=T +1

min(M,t)∑
k=1

2k
(

M
k

)(
t − 1
k − 1

)
,

(A.19)

123



J Math Chem (2008) 44:142–171 171

and therefore

2

⎛
⎝(1 + 2M) +

T∑
t=2

min(M,t)∑
k=1

2k
(

M
k

) (
t − 1
k − 1

)⎞
⎠

< (1 + 2M) +
T +1∑
t=2

min(M,t)∑
k=1

2k
(

M
k

) (
t − 1
k − 1

)
.

(A.20)

For all three modulation schemes, HE can produce an overdetermined system of
equations. Overdetermined systems will generally support multiple solutions in cases
where the equations themselves are related, such as by symmetry.
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